
The family of quaternionic quasi-unitary Lie algebras and their central extensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 4495

(http://iopscience.iop.org/0305-4470/32/24/313)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 4495–4507. Printed in the UK PII: S0305-4470(99)99493-3

The family of quaternionic quasi-unitary Lie algebras and
their central extensions

Francisco J Herranz† and Mariano Santander‡
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Abstract. The family of quaternionic quasi-unitary (or quaternionic unitary Cayley–Klein
algebras) is described in a unified setting. This family includes the simple algebrassp(N + 1)
andsp(p, q) in the Cartan seriesCN+1, as well as many non-semisimple real Lie algebras which
can be obtained from these simple algebras by particular contractions. The algebras in this family
are realized here in relation with the groups of isometries of quaternionic Hermitian spaces of
constant holomorphic curvature. This common framework allows one to perform the study of
many properties for all these Lie algebras simultaneously. In this paper the central extensions for
all quasi-simple Lie algebras of the quaternionic unitary Cayley–Klein family are shown to be
trivial no matter their dimension.

1. Introduction

This paper is devoted to a double purpose. First, it introduces and describes the structure of a
family of Lie algebras, the quaternionic quasi-unitary algebras, or quaternionic unitary Cayley–
Klein (CK) algebras, which include as simple members the algebras in the Cartan seriesCN+1

which in standard notation are written assp(p, q), p+q = N +1, as well as many non-simple
members which can be obtained from the former by a sequence of contractions. The description
is also conducted in relation to the symmetric homogeneous spaces (the quaternionic Hermitian
spaces of rank one) where these groups act in a natural way.

The second and main purpose is to investigate the Lie algebra cohomology of the algebras
in this CK family, in any dimension. These extensions have both a mathematical interest and
physical relevance. Therefore, this part of the paper can be considered as a further step in a
systematic study of properties of the these families of Lie algebras [1–8], by using a formalism
which allows a clear view of the behaviour of these properties under contraction; in physical
terms contractions are related to some kind of approximation.

In particular, the central extensions of algebras in the two other main CK families of Lie
algebras (the quasi-orthogonal algebras and the two families of quasi-unitary algebras) have
been studied in two previous papers, in the general situation and for any dimension [7, 8]. We
refer to these works for references and for physical motivations. The knowledge of the second
cohomology group for a Lie algebra relies on the general solution of a set of linear equations, but
in special cases the calculations may be bypassed by using some general results: for instance,
the second cohomology group is trivial for semisimple Lie algebras. But once a contraction is
made, the semisimple character disappears, and the contracted algebramighthave non-trivial
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central extensions. Instead of finding the general solution for the extension equations on a
case-by-case basis, our approach (as developed previously for the quasi-orthogonal algebras
[7] and for the quasi-unitary algebras [8]) is to conduct these calculations for a whole family
including a large number of algebras simultaneously. In this paper we discuss the ‘next’ family:
the quaternionic quasi-unitary one. The advantages in this approach can be summed up by:
(a) it allows us to record, in an easily retrievable form, a large number of results which could
be required in applications, both in mathematics and in physics, and (b) it avoids, once and for
all, the case-by-case-type computation of the central extensions of algebras included in each
family and affords a global view on the interrelations between cohomology and contractions.

Section 2 is devoted to the description of the family of quaternionic unitary CK algebras.
We show how to obtain these as graded contractions of the compact algebrau(N + 1,H) ≡
sp(N + 1), and we provide some details on their structure. These algebras are associated
with the quaternionic Hermitian spaces (of rank one) with metrics of different signatures and
with their contractions, so we devote a part of this section to dwell upon these questions. In
section 3 the general solution to the central extension problem for these algebras is given. The
result obtained is quite simple to state: all the extensions of any algebra in the quaternionic
unitary CK family are trivial. This triviality is already known (Whitehead’s lemma) for the
simple algebrasu(p, q,H) ≡ sp(p, q) in this family, but comes as a surprise for the rather large
number of non-semisimple Lie algebras in this CK family, which can be obtained by contracting
u(p, q,H). This is also in marked contrast with the results for the central extensions of both the
orthogonal and the unitary CK families, where some algebras (particularly the most contracted
one) always allow some non-trivial extensions. Finally, some remarks close the paper.

2. The family of quaternionic unitary CK algebras

To begin with we consider the compact real form of the Lie algebra in the Cartan seriesCN+1.
This compact real form can be realized as the Lie algebra of the complex unitary-symplectic
group sometimes denoted asUSp(2(N + 1)) [9] but more usually referred to for brevity as
the ‘symplectic’ group,Sp(N + 1). The usual convention is to denote this group without any
reference to a field to avoid confusion with the truesymplecticgroups over either the reals
Sp(2(N + 1),R) or over the complex numbersSp(2(N + 1),C); in these last cases the term
symplectic is properly associated to the symmetry group of an antisymmetric metric. This
double use of the name ‘symplectic’ and of the symbolsSp andsp is rather unfortunate, and
following Sudbery [10], we shall change the symbol for one of the families, and useSq, sq

for the unitary-symplectic groups and algebras usually denoted, without any field reference,
by Sp, sp.

The groupSq(N + 1) ≡ USp(2(N + 1)) is the intersection of the complexunitarygroup
U(2(N + 1),C) and the complexsymplecticgroupSp(2(N + 1),C):

Sq(N + 1) ≡ USp(2(N + 1)) = U(2(N + 1),C) ∩ Sp(2(N + 1),C)

which is a consequence of the nature ofSq(N + 1) as the quaternionicunitary group, whose
matrices leave invariant a quaternionic definite positive Hermitian metric.

We recall that all other non-compact real forms in the Cartan seriesCN+1 are the real
symplecticalgebrasp(2(N+1),R), and the algebrassq(p, q),p+q = N+1, of the quaternionic
pseudo-unitary groupsSq(p, q), which allow a realization as

Sq(p, q) ≡ USp(2p, 2q) = U(2p, 2q,C) ∩ Sp(2(N + 1),C)

and are the groups of pseudo-unitary quaternionic matrices leaving invariant a quaternionic
Hermitian metric of signature(p, q).
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The Lie algebrasq(N + 1) has dimension 2(N + 1)2 + (N + 1) and is usually realized
by 2(N + 1) × 2(N + 1) complex matrices [9, 11]. The alternative realization of the group
Sq(N + 1) as a quaternionic unitary matrix group,Sq(N + 1) ≡ U(N + 1,H) [12], leads to
another realization of the Lie algebrasq(N + 1) by means ofanti-Hermitianmatrices over the
quaternionic skew fieldH:

Jab = −eab + eba Mα
ab = iα(eab + eba) Eαa = iαeaa (2.1)

wherea < b, a, b = 0, 1, . . . , N , α = 1, 2, 3; i1 = i, i2 = j , i3 = k are the usual quaternionic
units, andeab is the(N + 1)× (N + 1)matrix with a single 1 entry in rowa, columnb. Notice
that the matricesJab andMα

ab are traceless, but the trace ofEαa is a non-zero pure imaginary
quaternion, so the realization is by anti-Hermitian quaternionic matrices whose trace has a
zero real part. When quaternions are realized as 2× 2 complex matrices (see e.g. [13]) then
(2.1) reduces to the usual realization ofsq(N + 1) by complex matrices 2(N + 1)× 2(N + 1)
which are at the same time complex unitary and complex symplectic; we remark that all these
matrices are traceless. In spite of the name quaternionic unitary algebra, the matrices in the
vector fundamental representation (2.1) ofsq(N + 1) areH-anti-Hermitian.

The multiplication of quaternionic units is encoded iniαiβ = −δαβ +
∑3

γ=1 εαβγ iγ where
εαβγ is the completely antisymmetric unit tensor withε123= 1. This relation allows us to derive
the expression for the Lie bracket of two pure quaternionic matricesXα = iαX, Yβ = iβY ,
whereX, Y are real matrices, as

[Xα, Y β ] = −δαβ [X, Y ] +
3∑

γ=1

εαβγ iγ {X, Y } (2.2)

where both the commutator and the anticommutator{X, Y } = XY + YX of the real matrices
X, Y appear. Using this formula, the commutation relations ofsq(N + 1) in the basis (2.1)
read

[Jab, Jac] = Jbc [Jab, Jbc] = −Jac [Jac, Jbc] = Jab
[Mα

ab,M
α
ac] = Jbc [Mα

ab,M
α
bc] = Jac [Mα

ac,M
α
bc] = Jab

[Jab,M
α
ac] = Mα

bc [Jab,M
α
bc] = −Mα

ac [Jac,M
α
bc] = −Mα

ab

[Mα
ab, Jac] = −Mα

bc [Mα
ab, Jbc] = −Mα

ac [Mα
ac, Jbc] = Mα

ab

[Jab, Jde] = 0 [Mα
ab,M

α
de] = 0 [Jab,M

α
de] = 0

[Jab, E
α
d ] = (δad − δbd)Mα

ab [Mα
ab, E

α
d ] = −(δad − δbd)Jab

[Jab,M
α
ab] = 2(Eαb − Eαa ) [Eαa , E

α
b ] = 0

(2.3)

[Mα
ab,M

β
ac] = εαβγMγ

bc [Mα
ab,M

β

bc] = εαβγMγ
ac [Mα

ac,M
β

bc] = εαβγMγ

ab

[Mα
ab,M

β

de] = 0 [Mα
ab,M

β

ab] = 2εαβγ (E
γ
a +Eγb )

[Mα
ab, E

β

d ] = (δad + δbd)εαβγM
γ

ab [Eαa , E
β

b ] = 2δabεαβγE
γ
a

(2.4)

where hereafter the following notational conventions are assumed:

• Whenever three indicesa, b, c appear, they are always assumed to verifya < b < c.
• Whenever three indicesa, b, d appear,a < b is assumed but the indexd is arbitrary, and

it might coincide with eithera or b.
• Whenever four indicesa, b, d, e appear,a < b, d < e and all of them are assumed to be

different.
• Whenever three quaternionic indicesα, β, γ appear, they are also assumed to be different

(so they are always some permutation of 1, 2, 3).
• There is not any implied sum over repeated indices; in particular there is no sum inγ in

expressions likeεαβγXγ .
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This matrix realization of the Lie algebrasq(N + 1) displays clearly the existence of
several subalgebras. On the one hand, the1

2N(N + 1) generatorsJab (a, b = 0, 1, . . . , N)
close an orthogonal algebraso(N + 1) whose non-zero commutation rules are written in the
first row of (2.3). On the other hand, for eachfixed α = 1, 2, 3, the(N + 1)2 generators
{Jab,Mα

ab, E
α
a } (a, b = 0, 1, . . . , N; a < b) give rise to an algebra isomorphic to the unitary

algebrau(N + 1) with commutators given by (2.3); these subalgebras we denote asuα(N + 1).
Hencesq(N + 1) containsthreesubalgebras isomorphic tou(N + 1), whose intersection is a
subalgebraso(N + 1).

The family of algebras we study in this paper can be obtained as graded contractions
[14, 15] fromsq(N + 1). The algebrasq(N + 1) can be endowed with a grading by a group
Z⊗N2 constituted by 2N involutive automorphismsSS defined by

SSJab = (−1)χS (a)+χS (b)Jab
SSM

α
ab = (−1)χS (a)+χS (b)Mα

ab SSE
α
a = Eαa α = 1, 2, 3

(2.5)

where S denotes any subset of the set of indices{0, 1, . . . , N}, and χS(a) denotes the
characteristic function overS. A particular solution of theZ⊗N2 graded contractions of
sq(N+1) leads to a family of Lie algebras which are called quaternionic unitary CK algebras or
quaternionic quasi-unitary Lie algebras [2, 3]. This family comprises the simple quaternionic
unitary and pseudo-unitary algebrassq(p, q) (p+q = N +1) in the Cartan seriesCN+1 as well
as many non-simple real Lie algebras which can be obtained from the former by contractions.
Collectively, all these algebras preserve some properties related to simplicity, so they belong
to the class of so-called ‘quasi-simple’ Lie algebras [16, 17], which explains the use of the
prefix quasi in their name. Overall, this is very similar to the situation of the families of
quasi-orthogonal algebras (withso(N + 1) as the initial Lie algebra [1, 4]) or to the families of
quasi-unitary or quasi-special unitary algebras over the complex numbers (starting from either
u(N + 1) or su(N + 1) [8]).

The quaternionic unitary CK algebras can be described by means ofN real coefficients
ωa (a = 1, . . . , N) and are denoted collectively assqω1,...,ωN (N +1), or in an abbreviated form,
assqω(N + 1) whereω stands forω = (ω1, . . . , ωN). We introduce the two-index coefficients
ωab defined by

ωab := ωa+1ωa+2 . . . ωb a, b = 0, 1, . . . , N a < b ωaa := 1 (2.6)

and the commutation relations of the generic CK algebra in the familysqω(N + 1) turn out to
be [2]

[Jab, Jac] = ωabJbc [Jab, Jbc] = −Jac [Jac, Jbc] = ωbcJab
[Mα

ab,M
α
ac] = ωabJbc [Mα

ab,M
α
bc] = Jac [Mα

ac,M
α
bc] = ωbcJab

[Jab,M
α
ac] = ωabMα

bc [Jab,M
α
bc] = −Mα

ac [Jac,M
α
bc] = −ωbcMα

ab

[Mα
ab, Jac] = −ωabMα

bc [Mα
ab, Jbc] = −Mα

ac [Mα
ac, Jbc] = ωbcMα

ab

[Jab, Jde] = 0 [Mα
ab,M

α
de] = 0 [Jab,M

α
de] = 0

[Jab, E
α
d ] = (δad − δbd)Mα

ab [Mα
ab, E

α
d ] = −(δad − δbd)Jab

[Jab,M
α
ab] = 2ωab(E

α
b − Eαa ) [Eαa , E

α
b ] = 0

(2.7)

[Mα
ab,M

β
ac] = ωabεαβγMγ

bc [Mα
ab,M

β

bc] = εαβγMγ
ac [Mα

ac,M
β

bc] = ωbcεαβγMγ

ab

[Mα
ab,M

β

de] = 0 [Mα
ab,M

β

ab] = 2ωabεαβγ (E
γ
a +Eγb )

[Mα
ab, E

β

d ] = (δad + δbd)εαβγM
γ

ab [Eαa , E
β

b ] = 2δabεαβγE
γ
a

(2.8)

where we adhere to the notational conventions given after (2.4).
The pattern of subalgebras previously discussed for the compact formsq(N + 1) clearly

holds for any member of the complete family. The quaternionic unitary CK algebrasqω(N +1)
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also contains as Lie subalgebras an orthogonal CK algebrasoω(N + 1) [2, 7] andthreeunitary
CK algebrasuαω(N + 1) [2, 8] whereα = 1, 2, 3; the commutation relations of the former
correspond to the first row of (2.7) and those of the latter are given by (2.7) (for an indexα

fixed). Hence we find the sequence

soω(N + 1) ⊂ uαω(N + 1) ⊂ sqω(N + 1). (2.9)

2.1. The quaternionic unitary CK groups

The matrix realization (2.1) allows a natural interpretation of the quaternionic unitary CK
algebras as the Lie algebras of the motion groups of the homogeneous symmetric spaces with
a quaternionic Hermitian metric (the two-point homogeneous spaces of quaternionic type and
rank one). Let us consider the spaceHN+1 endowed with a Hermitian (sesqui)linear form
〈·|·〉ω : HN+1×HN+1→ H defined by

〈a|b〉ω := ā0b0 + ā1ω1b
1 + ā2ω1ω2b

2 + · · · + āNω1 . . . ωNb
N =

N∑
i=0

āiω0ib
i (2.10)

wherea, b ∈ HN+1 andāi means the quaternionic conjugation of the componentai . For the
moment, we assume that we are in the generic case with allωa 6= 0. The underlying metric is
provided by the matrix

Iω = diag(1, ω01, ω02, . . . , ω0N) = diag(1, ω1, ω1ω2, . . . , ω1 . . . ωN) (2.11)

and the CK groupSqω1,...,ωN (N + 1) ≡ Sqω(N + 1) is defined as the group of linear isometries
of this Hermitian metric over a quaternionic space. Thus the isometry condition for an element
U of the Lie group

〈Ua|Ub〉ω = 〈a|b〉ω ∀a, b ∈ HN+1 (2.12)

leads to the following relation:

U†IωU = Iω ∀U ∈ Sqω(N + 1) (2.13)

which for the Lie algebra implies

X†Iω + IωX = 0 ∀X ∈ sqω(N + 1). (2.14)

From this equation, it is clear that the quaternionic unitary CK algebra is generated by the
following (N + 1)× (N + 1) Iω-anti-Hermitian matrices overH (cf (2.1)):

Jab = −ωabeab + eba Mα
ab = iα(ωabeab + eba) Eαa = iαeaa. (2.15)

These matrices can be checked to satisfy the commutation relations (2.7) and (2.8).
When any of the constantsωa are equal to zero, the set of linear isometries of the Hermitian

metric over the quaternions (2.12) is larger than the group generated by (2.15), though in these
cases there exist additional geometric structures inHN+1, which are related to the existence of
invariant foliations, and the proper definition of the automorphism group for these structures
leads again to the matrix Lie algebra generated by (2.15) with commutation relations (2.7) and
(2.8).

The action of the groupSqω(N+1) inHN+1 is not transitive, and the ‘sphere’ with equation

〈x|x〉ω :=
N∑
i=0

x̄iω0ix
i = 1 (2.16)

is stable. However, if we takeO = (1, 0, . . . ,0) as a reference point in this sphere, the
realization (2.15) shows that the isotropy subgroup ofO is Sqω2,ω3,...,ωN (N), and the isotropy
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subgroup of theray of O is Sq(1) ⊗ Sqω2,ω3,...,ωN (N) (note that the quaternions being non-
commutative, a choice for left or right multiplication for scalars is required). Here the algebra
sq(1) of the subgroupSq(1) can be identified with the Lie algebra of automorphisms of the
quaternions, generated by the three matrices

Iα = iα
N∑
a=0

eaa α = 1, 2, 3 (2.17)

which can be identified with the three quaternionic units. We note in passing that these are the
elements of the Lie algebra which are unavoidably realized by matrices with non-zero pure
imaginary trace, as all the generatorsEαa can be expressed in terms of zero trace combinations
(sayBαl ≡ Eαl−1 − Eαl , l = 1, . . . , N) and the threeIα. In this way we find the quaternionic
Hermitian homogeneous spaces as associated with the quaternionic unitary family of CK
groups:

Sqω1,ω2,ω3,...,ωN (N + 1)/(Sq(1)⊗ Sqω2,ω3,...,ωN (N)). (2.18)

For fixed ω1, ω2, ω3, . . . , ωN this space, which has real dimension 4N , has a natural
real quadratic metric (either Riemannian, pseudo-Riemannian or degenerate ‘Riemannian’),
coming from the real part of the quaternionic Hermitian product in the ambient space. At
the origin and in an adequate basis, this metric is given by the diagonal matrix with entries
(1, ω2, ω2ω3, . . . , ω2 . . . ωN), each entry repeated four times. The three well known Hermitian
elliptic, euclidean and hyperbolic quaternionic spaces, of constant holomorphic curvature 4K

(eitherK > 0, K = 0 andK < 0, respectively) appear in this family as associated to the
special valuesω1 = K andω2 = ω3 = · · · = ωN = 1, where the metric is Riemannian
(definite positive). All CK Hermitian spaces of quaternionic type withω1 = K have constant
holomorphic curvature 4K and the signature (and/or the eventual degeneracy) of the metric
is determined by the remaining constantsω2, ω3, . . . , ωN . When all these constants are
different from zero, but some are negative, the metric is pseudo-Riemannian (indefinite and not
degenerate), and when some of the constantsω2, ω3, . . . , ωN vanish the metric is degenerate.

2.2. Structure of the quaternionic unitary CK algebras

As each real coefficientωa can be positive, negative or zero, the quaternionic unitary CK family
sqω(N + 1) includes 3N Lie algebras. Semisimple algebras appear when all the coefficients
ωa are different from zero: these are the algebrassq(p, q) in the Cartan seriesCN+1, where
p andq (p + q = N + 1) are the number of positive and negative terms in the matrixIω
(2.11). If we set allωa = 1 we recover the initial compact algebrasq(N + 1). When one
or more coefficientsωa vanish the CK algebra turns out to be a non-semisimple Lie algebra;
the vanishing of one (or several) coefficientωa is equivalent to performing an (or series of)
Inönü–Wigner contraction [18, 19].

Some of the quaternionic unitary CK algebras are isomorphic; for instance, the
isomorphism

sqω1,ω2,...,ωN−1,ωN (N + 1) ' sqωN ,ωN−1,...,ω2,ω1(N + 1) (2.19)

(that interchangesωab ↔ ωN−b,N−a) is provided by the map

Jab → J ′ab = −JN−b,N−a
M1
ab → M ′1ab = −M2

N−b,N−a E1
a → E′1a = −E2

N−a
M2
ab → M ′2ab = −M1

N−b,N−a E2
a → E′2a = −E1

N−a
M3
ab → M ′3ab = −M3

N−b,N−a E3
a → E′3a = −E3

N−a.

(2.20)
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Each algebra in the family of quaternionic unitary CK algebras has many subalgebras
isomorphic to orthogonal, unitary, or special unitary CK algebras, as well as many subalgebras
isomorphic to quaternionic unitary algebras in the familysqω(M + 1) with M < N . A clear
way to describe this is to denote byXab the four generators{Jab,Mα

ab} (α = 1, 2, 3), byEa
the set of three generatorsEαa , and arrange the basis generators ofsqω(N + 1) as follows:

E0 X01 X02 . . . X0a−1 X0a X0a+1 . . . X0N

E1 X12 . . . X1a−1 X1a X1a+1 . . . X1N

. . .
...

...
...

...

Ea−2 Xa−2a−1 Xa−2a Xa−2a+1 . . . Xa−2N

Ea−1 Xa−1a Xa−1a+1 . . . Xa−1N

Ea Xa a+1 . . . XaN
. . .

...

EN−1 XN−1N

EN.

A Cartan subalgebra is made up of theN +1 generatorsE3
0, E

3
1, . . . , E

3
N (in the outermost

diagonal). In this arrangement the generators to the left and below the rectangle span
subalgebrassqω1,...,ωa−1(a) andsqωa+1,...,ωN (N +1−a), respectively, while the generators inside
the rectangle do not span a subalgebra unlessωa = 0 (and in this case this is an Abelian
subalgebra). The unitary subalgebrasuαω(N + 1) appear in a similar way by keeping onlyJab,
a singleMα

ab out of eachXab and a singleEαa out of each setEa (for a fixedα). By keeping
only Jab we get thesoω(N + 1) subalgebra.

If a coefficientωa = 0, then the contracted algebra has a semidirect structure

sqω1,...,ωa−1,ωa=0,ωa+1,...,ωN (N + 1) ≡ t � (sqω1,...,ωa−1(a)⊕ sqωa+1,...,ωN (N + 1− a)) (2.21)

where t is spanned by the generators inside the rectangle (it is an Abelian subalgebra of
dimension 4a(N +1−a)), whilesqω1,...,ωa−1(a) andsqωa+1,...,ωN (N +1−a) are two quaternionic
unitary CK subalgebras spanned by the generators in the triangles to the left and below
the rectangle. When there are several coefficientsωa = 0 the contracted algebra has
simultaneously several semidirect structures (2.21).

Notice that whenω1 = 0 the contracted algebra has the structure

sq0,ω2,...,ωN (N + 1) ≡ t4N � (sq(1)⊕ sqω2,...,ωN (N)) (2.22)

and here the subindex 4N in t is the real dimension of the flat homogeneous space (2.18)
which can be identified withHN endowed with a flat metric given, overH, by the diagonal
matrix (1, ω2, ω2ω3, . . . , ω2ω3 . . . ωN); when all these are positive this Lie algebra can be
called inhomogeneous quaternionic unitary algebra isq(N).

3. Central extensions

After having described the structure of the quaternionic unitary CK algebras, we now turn to
the second goal of this paper: to give a complete description of all possible central extensions
of the algebras in the quaternionic unitary CK family. The outcome of this study is simple to
state: in any dimension, and for all quaternionic unitary CK algebras—no matter of how many
ωa are equal or different from zero—there are no non-trivial central extensions.

For anyr-dimensional Lie algebra with generators{X1, . . . , Xr} and structure constants
Ckij , a generic central extension by the one-dimensional algebra generated by4 will have
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commutation relations given by

[Xi,Xj ] =
r∑
k=1

CkijXk + ξij4 [4,Xi ] = 0. (3.1)

The extension coefficients or central chargesξij must be antisymmetric in the indicesi, j ,
ξji = −ξij and must fulfil the following conditions coming from the Jacobi identities for the
generatorsXi,Xj ,Xl in the extended Lie algebra:

r∑
k=1

(Ckij ξkl +Ckjlξki +Ckliξkj ) = 0. (3.2)

If for a set of arbitrary real numbersµi we perform a change of generators:

Xi → X′i = Xi +µi4 (3.3)

the commutation rules for the generators{X′i}are given by the expressions (3.1) with a new set of
ξ ′ij = ξij−

∑r
k=1C

k
ijµk, whereδµ(Xi,Xj ) =

∑r
k=1C

k
ijµk is the two-coboundary generated by

µ. Extension coefficients differing by a two-coboundary correspond to equivalent extensions;
and those extension coefficients which are a two-coboundaryξij = −

∑r
k=1C

k
ijµk correspond

to trivial extensions; the classes of equivalence of non-trivial two-cocycles determine the
second cohomology group of the Lie algebra.

3.1. Central extensions of the unitary CK subalgebras

In order to simplify further computations, we first state the result about the structure of the
central extensions of the unitary CK algebrauω(N + 1)[8], which will naturally appear when
studying the extensions of the quaternionic unitary CK algebras, because eachsqω(N + 1)
contains three such unitary CK subalgebras.

Theorem 3.1.The commutation relations of any central extensionuαω(N + 1) of the unitary
CK algebrauαω(N + 1) with generators{Jab,Mα

ab, E
α
a } (a, b = 0, 1, . . . , N and quaternionic

indexα fixed) by the one-dimensional algebra generated by4 are

[Jab, Jac] = ωab(Jbc + hαbc4) [Mα
ab,M

α
ac] = ωab(Jbc + hαbc4)

[Jab, Jbc] = −(Jac + hαac4) [Mα
ab,M

α
bc] = Jac + hαac4

[Jac, Jbc] = ωbc(Jab + hαab4) [Mα
ac,M

α
bc] = ωbc(Jab + hαab4)

[Jab, Jde] = 0 [Mα
ab,M

α
de] = 0

[Jab,M
α
ac] = ωab(Mα

bc + gαbc4) [Mα
ab, Jac] = −ωab(Mα

bc + gαbc4)

[Jab,M
α
bc] = −(Mα

ac + gαac4) [Mα
ab, Jbc] = −(Mα

ac + gαac4)

[Jac,M
α
bc] = −ωbc(Mα

ab + gαab4) [Mα
ac, Jbc] = ωbc(Mα

ab + gαab4)

[Jab, E
α
d ] = (δad − δbd)(Mα

ab + gαab4) [Jab,M
α
de] = 0

[Mα
ab, E

α
d ] = −(δad − δbd)(Jab + hαab4)

(3.4)

[Jab,M
α
ab] = 2ωab(E

α
b − Eαa ) + f αab4 [Eαa , E

α
b ] = eαa,b4 a < b (3.5)

where

f αab =
b∑

s=a+1

ωa s−1ωsbf
α
s−1s . (3.6)

The extension is characterized by the following types of extension coefficients:
Type I. N(N + 1)/2 coefficientsgαab andN(N + 1)/2 coefficientshαab (a < b and

a, b = 0, 1, . . . , N).
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Type II.N coefficientsf αa−1a (a = 1, . . . , N).
Type III.N(N + 1)/2 coefficientseαa,b (a < b anda, b = 0, 1, . . . , N), satisfying

ωabe
α
a,b = 0 ωab(e

α
a,c − eαb,c) = 0 ωbc(e

α
a,b − eαa,c) = 0 a < b < c. (3.7)

This theorem expresses the results previously obtained in [8] but in a different basis (we
are using here a different set of Cartan generators) so that we use another notation for the
extension coefficients.

The extension coefficients are classed into types according as their behaviour under
contraction. All type I coefficients correspond to central extensions which are trivial for
all the unitary CK algebras, no matter of how many coefficientsωa are equal to zero, since
they can be removed at once by means of the redefinitions

Jab → Jab + hαab4 Mα
ab → Mα

ab + gαab4. (3.8)

Each type II coefficientf αa−1a gives rise to a non-trivial extension ifωa = 0 and to a trivial
one otherwise. That is, these extensions become non-trivial through the contraction and they
behave as pseudoextensions [20, 21]. On the other hand, when a type III coefficienteαa,b is
non-zero, the extension that it determines is always non-trivial so that it cannot appear through
a pseudoextension process. Therefore, the only extensions which can be non-trivial for a given
algebra in the CK familyuω(N + 1) are those appearing in the Lie brackets (3.5).

We also recall that the dimension of the second cohomology group of a unitary CK algebra
uω(N + 1) with n coefficientsωa equal to zero is

dim(H 2(uω(N + 1),R)) = n +
n(n + 1)

2
= n(n + 3)

2
(3.9)

where the first termn corresponds to the extension coefficientsf αa−1a and the second term
n(n+1)

2 to the extensions determined byeαa,b.

3.2. Central extensions of the quaternionic unitary CK algebras

In what follows we determine the non-trivial extension coefficientsξij for a generic centrally
extended quaternionic unitary CK algebrasqω(N + 1) (3.1) by solving the Jacobi identities
(3.2).

First, we consider a generic extended unitary CK subalgebra, sayu1
ω(N + 1), spanned by

the generators{Jab,M1
ab, E

1
a, 4} (a, b = 0, 1, . . . , N; a < b) with pure quaternionic index

equal to 1. It is clear that the set of Jacobi identities involving only these generators lead to
the results given in the theorem 3.1. Hence, we find the commutation relations (3.4) and (3.5)
with extension coefficients denotedg1

ab, h
1
ab, f

1
ab ande1

a,b; we apply the redefinitions (cf (3.8))

Jab → Jab + h1
ab4 M1

ab → M1
ab + g1

ab4 (3.10)

and the Lie brackets ofu1
ω(N + 1) ⊂ sqω(N + 1) turn out to be

[Jab, Jac] = ωabJbc [Jab, Jbc] = −Jac [Jac, Jbc] = ωbcJab
[M1

ab,M
1
ac] = ωabJbc [M1

ab,M
1
bc] = Jac [M1

ac,M
1
bc] = ωbcJab

[Jab,M
1
ac] = ωabM1

bc [Jab,M
1
bc] = −M1

ac [Jac,M
1
bc] = −ωbcM1

ab

[M1
ab, Jac] = −ωabM1

bc [M1
ab, Jbc] = −M1

ac [M1
ac, Jbc] = ωbcM1

ab

[Jab, Jde] = 0 [M1
ab,M

1
de] = 0 [Jab,M

1
de] = 0

[Jab, E
1
d ] = (δad − δbd)M1

ab [M1
ab, E

1
d ] = −(δad − δbd)Jab

(3.11)

[Jab,M
1
ab] = 2ωab(E

1
b − E1

a) + f 1
ab4 [E1

a, E
1
b ] = e1

a,b4 a < b. (3.12)

The two remaining extended unitary CK subalgebrasuλω(N + 1) ⊂ sqω(N + 1) with
λ = 2, 3 are generated by{Jab,Mλ

ab, E
λ
a ,4} (hereafter we shall reserveλ to stand exclusively
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for the quaternionic indicesλ = 2, 3, whereasα, β, γ are allowed to take on any value
1, 2, 3). The subalgebrasuλω(N +1) have generic extended Lie brackets (as (3.1)) except for the
common orthogonal CK subalgebrasoω(N + 1) spanned by the generators{Jab}which is non-
extended and whose Lie brackets are already written in (3.11). For the two remaining unitary
subalgebras, we have already used up the redefinition concerning the common generators in
soω(N + 1), so we cannot directly apply the results of the theorem 3.1 and we have to compute
their corresponding Jacobi identities by taking into account that initially both contain a non-
extendedsoω(N + 1). As the equations so obtained are similar to those written in detail in [8]
we omit them and give the final result. The extension coefficients that appear are denotedgλab,
hλa a+1, f

λ
ab andeλa,b, for λ = 2, 3; the Lie brackets ofuλω(N + 1) read

[Mλ
ab,M

λ
ac] = ωabJbc [Mλ

ab,M
λ
bc] = Jac [Mλ

ac,M
λ
bc] = ωbcJab

[Jab,M
λ
ac] = ωab(Mλ

bc + gλbc4) [Mλ
ab, Jac] = −ωab(Mλ

bc + gλbc4)
[Jab,M

λ
bc] = −(Mλ

ac + gλac4) [Mλ
ab, Jbc] = −(Mλ

ac + gλac4)
[Jac,M

λ
bc] = −ωbc(Mλ

ab + gλab4) [Mλ
ac, Jbc] = ωbc(Mλ

ab + gλab4)
[Jab,M

λ
de] = 0 [Mλ

ab,M
λ
de] = 0

[Jab, E
λ
d ] = (δad − δbd)(Mλ

ab + gλab4)
[Mλ

ab, E
λ
d ] = −(δad − δbd)Jab b > a + 1

[Mλ
a a+1, E

λ
d ] = −(δad − δa+1d)(Ja a+1 + hλa a+14)

(3.13)

[Jab,M
λ
ab] = 2ωab(E

λ
b − Eλa ) + f λab4 [Eλa , E

λ
b ] = eλa,b4 a < b. (3.14)

The coefficientsf λab andeλa,b (λ = 2, 3) are characterized by theorem 3.1 (see (3.6) and (3.7)),
while the extensionshλa a+1 are subjected to the relations

ωah
λ
a a+1 = 0 ωa+2h

λ
a a+1 = 0. (3.15)

Notice that now the coefficientshλab with b > a + 1 are zero (this is a direct consequence of
the presence of the non-extendedsoω(N + 1)). We now apply the redefinitions given by

Mλ
ab → Mλ

ab + gλab4 λ = 2, 3 (3.16)

and a glance to (3.13) shows that the corresponding extensions are always trivial, so the
extension coefficientsgλab are eliminated.

At this point the complete set of Lie brackets ofsqω(N + 1) turns out to be

[Jab, Jac] = ωabJbc [Jab, Jbc] = −Jac [Jac, Jbc] = ωbcJab
[Mα

ab,M
α
ac] = ωabJbc [Mα

ab,M
α
bc] = Jac [Mα

ac,M
α
bc] = ωbcJab

[Jab,M
α
ac] = ωabMα

bc [Jab,M
α
bc] = −Mα

ac [Jac,M
α
bc] = −ωbcMα

ab

[Mα
ab, Jac] = −ωabMα

bc [Mα
ab, Jbc] = −Mα

ac [Mα
ac, Jbc] = ωbcMα

ab

[Jab, Jde] = 0 [Mα
ab,M

α
de] = 0 [Jab,M

α
de] = 0

[Jab, E
α
d ] = (δad − δbd)Mα

ab [M1
ab, E

1
d ] = −(δad − δbd)Jab

[Mλ
ab, E

λ
d ] = −(δad − δbd)Jab b > a + 1

(3.17)

[Mλ
a a+1, E

λ
d ] = −(δad − δa+1d)(Ja a+1 + hλa a+14) (3.18)

[Jab,M
α
ab] = 2ωab(E

α
b − Eαa ) + f αab4 [Eαa , E

α
b ] = eαa,b4 a < b (3.19)
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[Mα
ab,M

β
ac] = ωabεαβγMγ

bc + εαβγm
α,β

ab,ac4

[Mα
ab,M

β

bc] = εαβγMγ
ac + εαβγm

α,β

ab,bc4

[Mα
ac,M

β

bc] = ωbcεαβγMγ

ab + εαβγm
α,β

ac,bc4

[Mα
ab,M

β

de] = εαβγmα,βab,de4
[Mα

ab,M
β

ab] = 2ωabεαβγ (E
γ
a +Eγb ) + εαβγm

α,β

ab 4

[Mα
ab, E

β

d ] = (δad + δbd)εαβγM
γ

ab + εαβγme
α,β

ab,d4

[Eαa , E
β

b ] = 2δabεαβγE
γ
a + εαβγ e

α,β

a,b 4.

(3.20)

Therefore, the Lie brackets (3.17) are non-extended, the extension coefficientshλa a+1 appearing
in (3.18) satisfy (3.15), the coefficients of the commutators (3.19) are characterized by the
theorem 3.1, and the extension coefficients in the commutators (3.20) are still generic, the
redefinitions (3.10) and (3.16) having been already incorporated in the brackets (3.20).

The list of all remaining extension coefficients is

hλa a+1 f αab eαa,b

m
α,β

ab,cd

m
α,β

ac,bd

m
α,β

ad,bc

m
α,β

ab,ac

m
α,β

ab,bc

m
α,β

ac,bc

m
α,β

ab

me
α,β

ab,a

me
α,β

ab,b

me
α,β

ab,e

e
α,β
a,a

e
α,β

a,b

(3.21)

where the two quaternionic indicesα, β are always different, and we assumea < b < c < d;
e stands for an index different from eithera andb.

In the following we proceed to compute the Jacobi identities involving the above
coefficients; the results obtained in any equation will be automatically introduced in any further
equation, so the order we consider for enforcing the Jacobi identities is an integral part of the
derivation, and should be respected. We denote the Jacobi identity (3.2) of the generatorsXi ,
Xj andXl by {Xi,Xj ,Xl}.

The following equations imply the vanishing of some coefficients:

{M3
a a+1, E

1
a, E

2
a+1} h2

a a+1 = 0
{M2

a a+1, E
1
a, E

3
a+1} h3

a a+1 = 0
(3.22)

{Eγa , Eβa , Eαb } eαa,b = 0 (3.23)

{Mα
ab,M

α
ac, E

γ
c } m

α,β

ab,ac = 0

{Mα
ab,M

α
bc, E

γ
c } m

α,β

ab,bc = 0

{Mα
ac,M

α
bc, E

γ

b } m
α,β

ac,bc = 0

(3.24)

{Jab,Mβ

cd, E
α
b } m

α,β

ab,cd = 0

{Jbc,Mα
ad, E

β
c } m

α,β

ad,bc = 0

{Jab,Mα
bc,M

β

bd} m
α,β

ac,bd −mβ,αad,bc = 0

(3.25)

{Mβ

ab, E
β
a , E

γ

b } me
α,β

ab,a = 0

{Mβ

ab, E
β

b , E
γ
a } me

α,β

ab,b = 0
(3.26)

{Mγ

ab, E
β
a , E

β
e } me

α,β

ab,e = 0 (3.27)

{Eαa , Eαb , Eγb } e
α,β

a,b = 0 (3.28)

so that the only remaining coefficients aref αab,m
α,β

ab andeα,βa,a . The Jacobi identities

{Jab,Mα
ab, E

β
a } 2ωabe

α,β
a,a −mα,βab + f γab = 0

{Jab,Mα
ab, E

β

b } 2ωabe
α,β

b,b −mα,βab − f γab = 0
(3.29)
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allow us to express the coefficientsf αab,m
α,β

ab in terms of theeα,βa,a as follows:

f
γ

ab = ωab(eα,βb,b − eα,βa,a )
m
α,β

ab = ωab(eα,βb,b + eα,βa,a ).
(3.30)

Notice that the first equation is consistent with the relation (3.6). Hence the only Lie brackets
of sqω(N + 1) (3.17)–(3.20) which still involve extension coefficients are

[Jab,M
γ

ab] = 2ωab{(Eγb + 1
2e
α,β

b,b 4)− (Eγa + 1
2e
α,β
a,a 4)}

[Mα
ab,M

β

ab] = 2ωabεαβγ {(Eγa + 1
2e
α,β
a,a 4) + (Eγb + 1

2e
α,β

b,b 4)}
[Eαa , E

β
a ] = 2εαβγ (E

γ
a + 1

2e
α,β
a,a 4).

(3.31)

These equations clearly suggest to introduce the redefinition

Eγa → Eγa + 1
2e
α,β
a,a 4 (3.32)

which explicitly shows the triviality of all the extensions determined by the coefficientse
α,β
a,a

(and consequently, by all thef αab andmα,βab ). Therefore, it is not necessary to compute more
Jacobi identities and we can conclude that the most general candidate we started with for a
central extensionsqω(N + 1) of any algebra in this family is always trivial.

This result can be summed up in the following theorem.

Theorem 3.2.The second cohomology groupH 2(sqω(N+1),R) of any Lie algebra belonging
to the quaternionic unitary CK family is always trivial, for anyN and for any values of the set
of constantsω1, ω2, . . . , ωN :

dim(H 2(sqω(N + 1),R)) = 0. (3.33)

4. Concluding remarks

This paper completes the study of cohomology of the quasi-simple or CK Lie algebras in
the three main series (orthogonal, unitary and quaternionic unitary), as associated with anti-
Hermitian matrices overR,C orH. In contrast to the quasi-orthogonal or quasi-unitary cases,
where the dimension of the second cohomology group of a generic algebra in the CK family
ranges between zero for the simple algebras and a maximum positive value for the most
contracted algebra (with allωa = 0), all the central extensions of any of the algebras in the
quaternionic quasi-unitary family are always trivial, even for the most contracted algebra.
Therefore, from the three types of extensions found in the quasi-orthogonal or quasi-unitary
cases, only the first type (extensions which are trivial for all the algebras in the family) is
present here. However, we should remark on the suitability of a CK approach to the study
of the central extensions of a complete family, because a case-by-case study (for any given
algebra in the family) would be no easier than the general analysis we have performed.

In addition to these threemain families of CK algebras, whose simple members
so(p, q), su(p, q), sq(p, q) can be realized as anti-Hermitian matrices over eitherR, C or
H, there are other CK families. In theCN+1 Cartan series, the remaining real Lie algebra is
the real symplecticsp(2(N + 1),R), which can be interpreted in terms of CK families either
as the single simple member of its own CK familyspω1,...,ωN (2(N + 1),R), or alternatively
and more like the interpretation in this paper, as the unitary familyuω1,...,ωN ((N + 1),H′) over
the algebra of the split quaternionsH′ (a pseudo-orthogonal variant of quaternions, where
i1, i2, i3 still anticommute, but their squares arei21 = −1, i22 = 1, i23 = 1; this is not a division
algebra). The cohomology properties of algebras in this CK family could be studied using
an approach similar to that made in this paper for the quaternionic unitary CK algebras. This
study, as well as the study of the central extensions of the CK series of the real Lie algebras
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su∗(2r) ≈ sl(r,H), so∗(2N), sl(N + 1,R) ≈ su(N + 1,C′) not included in the three main
‘signature’ series is worth separate consideration.
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